

Alt Daber - PV Next Generation

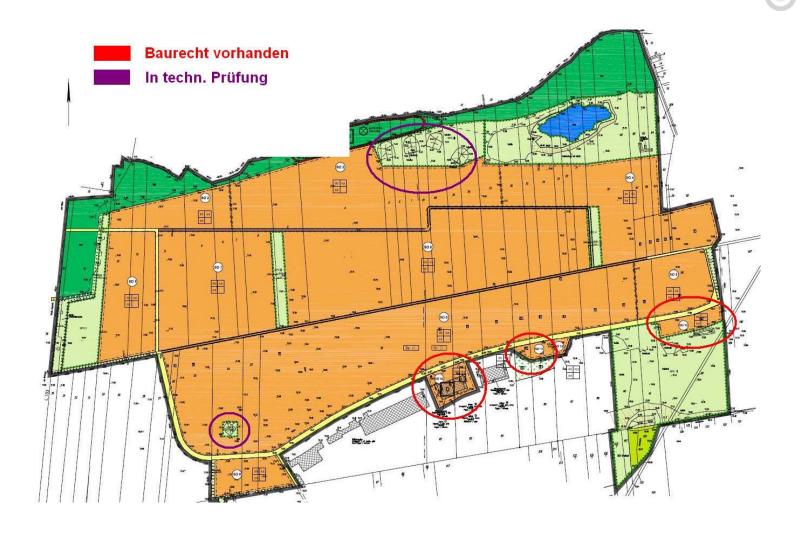
2. Zwischenbericht zum Status der Entwicklung für einen Batteriespeicher zur Netzregelung

18.04.2012, Dipl. Ing. Stefan Brabant (L-NL-Mitte), Lars Fallant (Projektleiter)

Status zum 16.05.2011 (Bericht No. 1)

- Vorstellung des Speicherprojektes den Mitgliedern des Wirtschafts ausschusses des Brandenburger Landtages, Reinhold Dellmann (SPD, Vors. d. WA) und Dierk Homeyer (CDU) in der Daberburg

Energie-Modell fürs ganze Land


роштк Wirtschaftsausschuss für Rahmenbedingungen zur Förderung künftiger Stromspeicherkapazitäten

"Von Wittstock lernen, heißt siegen lernen" Reinhold Dellmann Vorsitzender Wirtschaftsausschuss Brandenburg

Bereits erledigt: Baurecht durch B-Plan

Weiterentwicklung seit dem 16.05.2011

Kommerziell:

 Gründung der Projektgesellschaft: "Speicherkraftwerk Wittstock 1 GmbH & Co KG" mit dem Sitz in Burgstraße 2, 16909 Wittstock/Dosse, Geschäftsführer sind: Martin Zembsch, Michael Belschak, Bernhard Beck und Tim Müller

Technisch:

- Festlegung des modularen Konzeptes in Containerbauweise Organisatorisch:
- Termin am 22.02.2012 im Ministerium für Wirtschaft und Europaangelegenheiten (u.a. Dr. Ing. Jochen Möller-Minist., Rene Hubrich-ZAB) in Potsdam zum Scooping eines möglichen Förderrahmens und dessen Zeitplan
- → Finalisierung des ersten Fördermittelantrages an die ILB

Fördermittelantrag ILB

Förderantra wurde zur Prüfung an ZAB gestellt

ZAB berät ILB über Fördervorhaben

Inhalte:

- Es werden mindestens zwei Container für die Beteiligung am Regelenergiemarkt benötigt
- Zusätzlich muss die Leistungsbereitstellung durch konventionelle Kraftwerke besichert werden
- Fördersumme ist wegen derzeitiger Gesetzeslage notwendig
 - Derzeit existieren für Speicher keine darstellbaren Wirtschaftsanreize

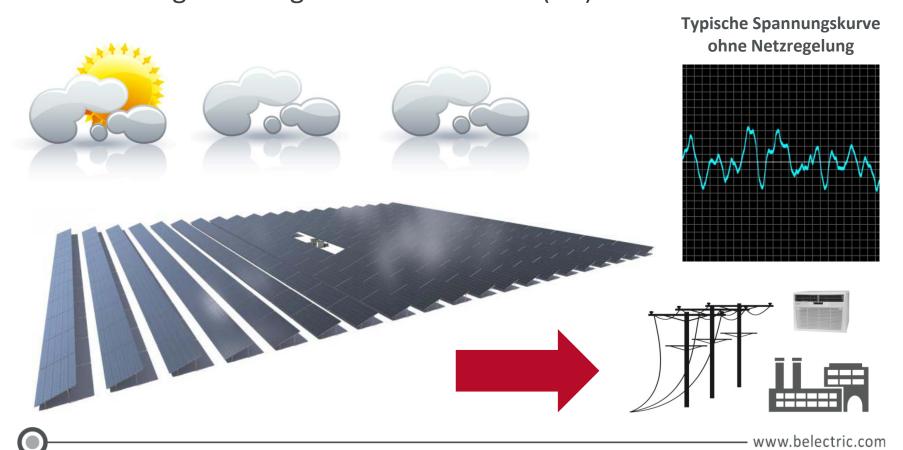
Referenzen: Freiflächen-Solarkraftwerke

Standort: Alt Daber, Deutschland

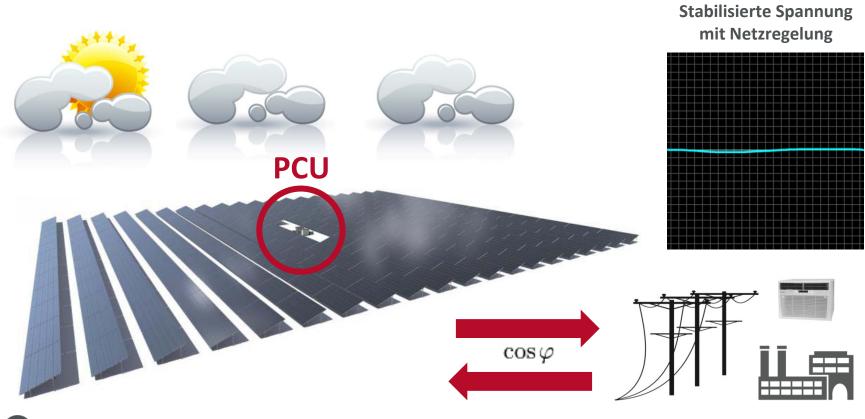
Nennleistung: 70.000 kWp, First Solar

Inbetriebnahme: Ende 2011

Versorgung: 19.250 Vier-Personen Haushalte pro Jahr


CO₂ Einsparung: 48.000 Tonnen pro Jahr

Netzproblem I: Spannungsschwankungen


Bei Photovoltaik und Windkraft variiert die Energieerzeugung. Zusätzlich schwankt der Stromverbrauch im Stromnetz durch unterschiedliche Netzlasten. Beides führt zu Spannungsschwankungen im regionalen Stromnetz (AC).

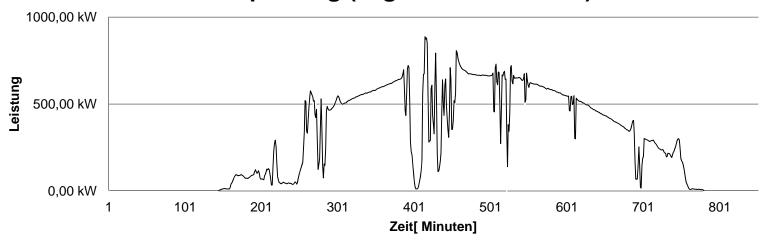
Lösung: Stabilisierung der Spannung

Lösung: Dezentrale Bereitstellung und Abzug von Blindleistung OHNE Generator bei Tages- und Nachtzeiten

Kontrolliert durch die Power Conditioning Unit (PCU)

Netzproblem II: PV-Verfügbarkeit

00


<u>Aktuell:</u> Schattenkraftwerke werden parallel zu erneuerbaren Energien betrieben, um einen ausfallsicheren Betrieb zu gewährleisten (Blackout-Problem.)

<u>Typische Probleme von Schattenkraftwerken:</u>

Hohe Investitionskosten bei geringen Betriebsstunden -> Hohe Betriebskosten Träges Ansprechverhalten der Leistungsregelung Hohe Anlaufzeiten

- Kostenintensiver Parallel-Betrieb notwendig
- Geringer Wirkungsgrad

PV-Einspeisung (Tagesverlauf im Juli)

Netzproblem II: PV-Verfügbarkeit

<u>Aktuell:</u> Schattenkraftwerke werden parallel zu erneuerbaren Energien betrieben, um einen ausfallsicheren Betrieb zu gewährleisten (Blackout-Problem.)

<u>Typische Probleme von Schattenkraftwerken:</u>

Hohe Investitionskosten bei geringen Betriebsstunden -> **Hohe Betriebskosten Träges Ansprechverhalten der Leistungsregelung Hohe Anlaufzeiten**

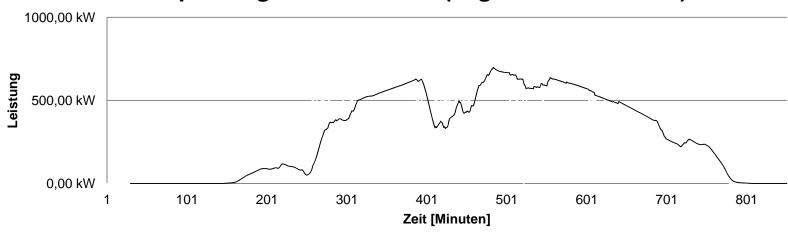
- Kostenintensiver Parallel-Betrieb notwendig
- Geringer Wirkungsgrad

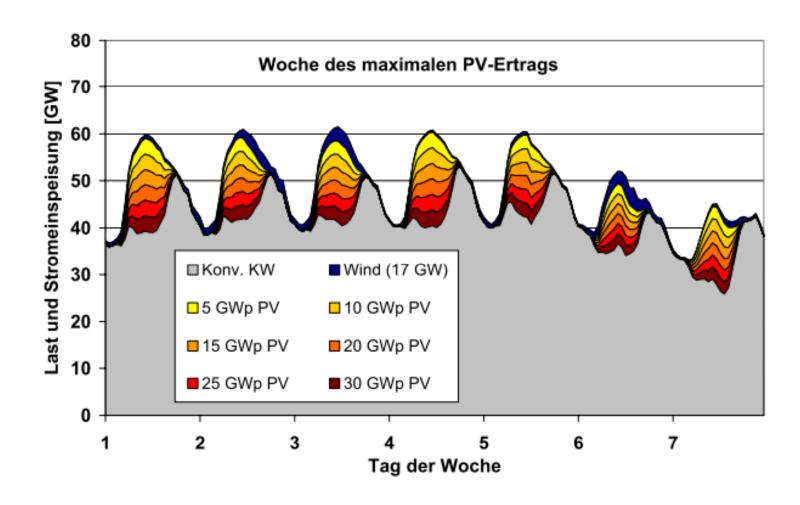
Tabelle 2.1: Eigenschaften thermischer Kraftwerke [Siemens 2004, Lux 1999, Ref-KW 2004]

Technologie	P _{nenn}	Wirkungsgradeinbußen (50 % Pnenn)	Leistungs- gradient	Anfahrdauer (Stillstand > 8h)
	[MWel]	[%]	[%/Min]	[h]
Braunkohlekraftwerk	1000	10	23	5
Steinkohle-DT-Kraftwerk	600	4	4 8	4
GuD-Kraftwerk	300	9	4 10	3
Gasturbine	150	20	10 25	0,3
Kemkraftwerk	1000	5	5 10	50

Lösung: Batteriepufferspeicher

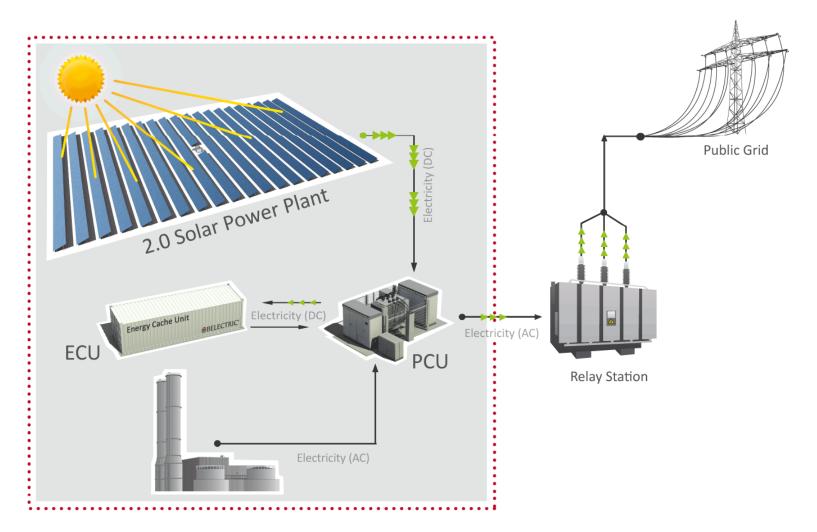
Lösung: Dezentrale Bereitstellung und Abzug von Wirkleistung durch Batteriespeicher bei Tages- und Nachtzeiten


durch die Energy Buffer Unit (EBU)


Die Revolution in der Photovoltaik:

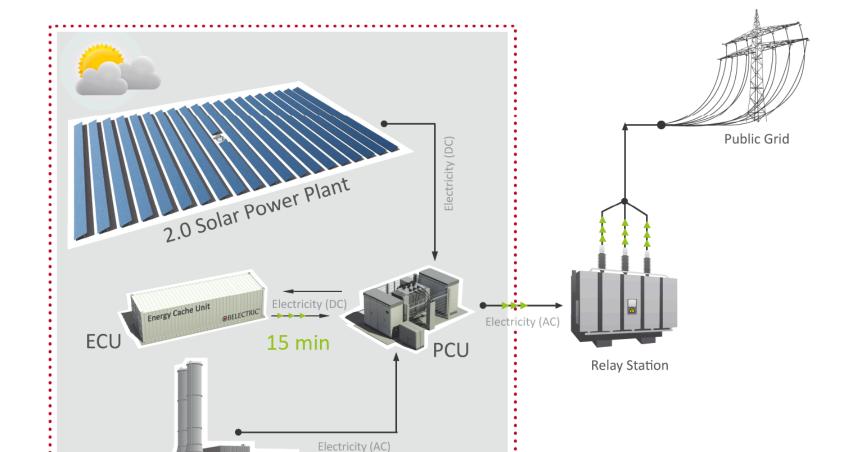
Grundlastfähige Solarkraftwerken

PV-Einspeisung + EBU 800-5M (Tagesverlauf im Juli)


Abbildung 4: Einfluss der PV-Einspeisung auf den Lastgang in Abhängigkeit der installierten PV-Leistung. Gezeigt ist der Wochengang der Netzlast für die Woche mit maximaler PV-Einspeisung (Datenbasis: 2005, 17 GW installierte Windleistung)

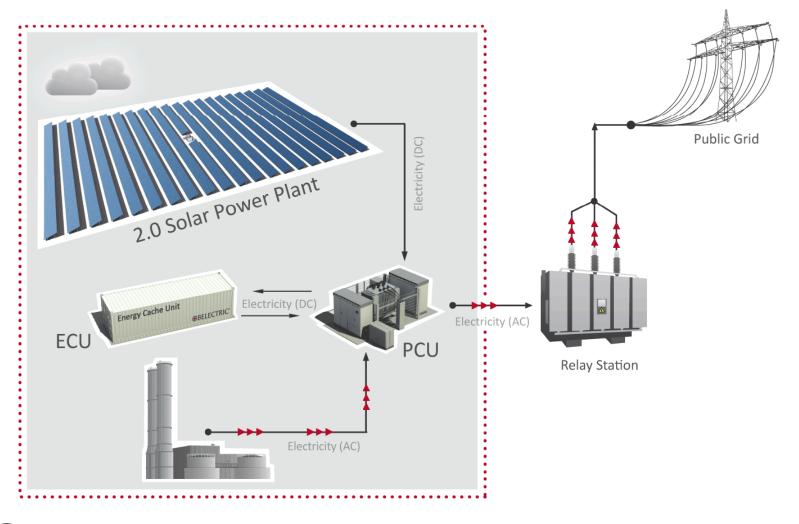
Quelle: ISET Kassel

Photovoltaik 2.0: Szenario 01


Anlagenbetrieb bei Sonne:

Photovoltaik 2.0: Szenario 02

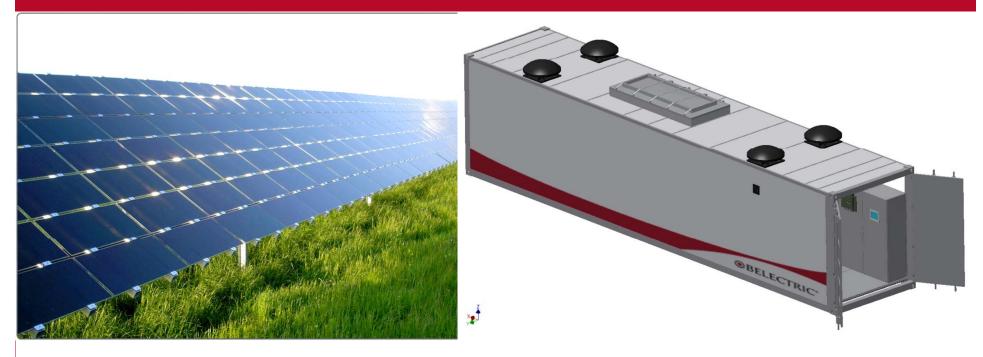
Überbrückung der Ausfallzeiten:



Photovoltaik 2.0: Szenario 03

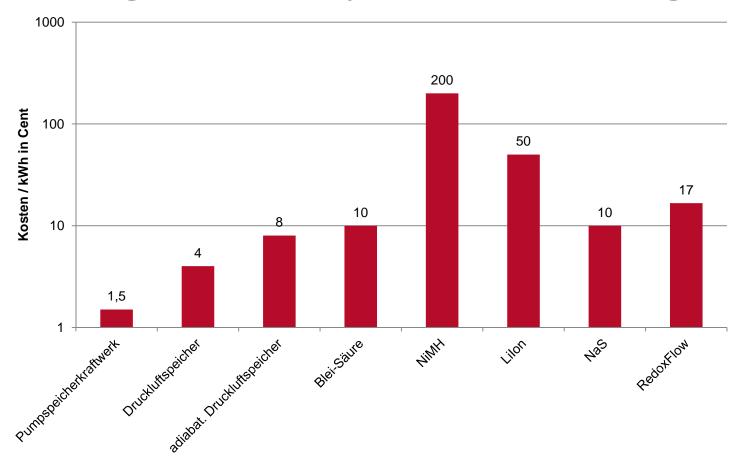
Regelkraftwerk liefert Bedarfsstrom

Photovoltaik 2.0: Das Resulat



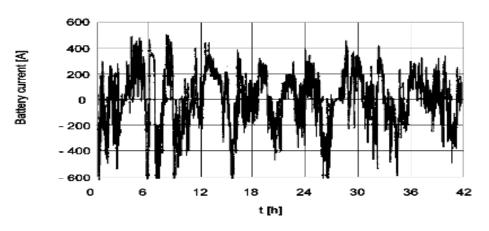
Solarkraftwerke der nächsten Generation...

- kombinieren die Vorteile traditioneller und erneuerbarer Energien für eine klimafreundliche und ausfallsichere Stromversorgung bei Tag & Nacht
- erzeugen Strom marktfähig zu fossilen Energiequellen
- stabilisieren unsere Stromnetze und senken die Netzausbaukosten
- überbrücken die Anlaufzeit von herkömmlichen Regelkraftwerken und sparen dadurch den Betrieb von Schattenkraftwerken ein



Solarkraftwerk Alt Daber (Wittstock / Dosse) 70 MWp + mit Batteriespeicher EBU 800-5M

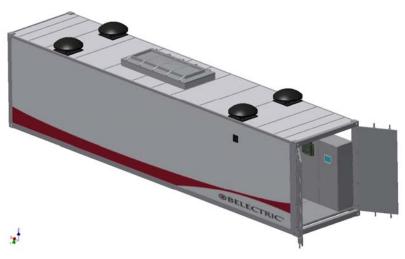
Vergleich der Speichertechnologien


Ulrich Stimming, Matthias Rzepka Elektrische Energiespeicher AKE Herbsttagung 22-23 Oktober 2009 Bad Honnef

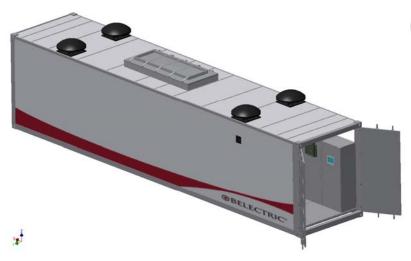
Technische Daten	EBU 800 5M
Max Leistung	800kW (5 min.)
	300kW (1h)
Nennkapazität (C5)	632 kWh

Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})

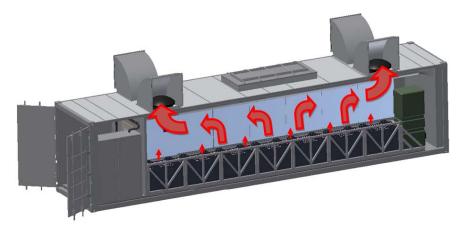
- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich



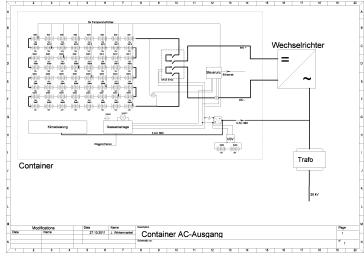
- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich
- Bis zu 3500 Vollzyklen Lebensdauer



- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich
- Bis zu 3500 Vollzyklen Lebensdauer
- Chemische Reaktion bei Entladung endotherm

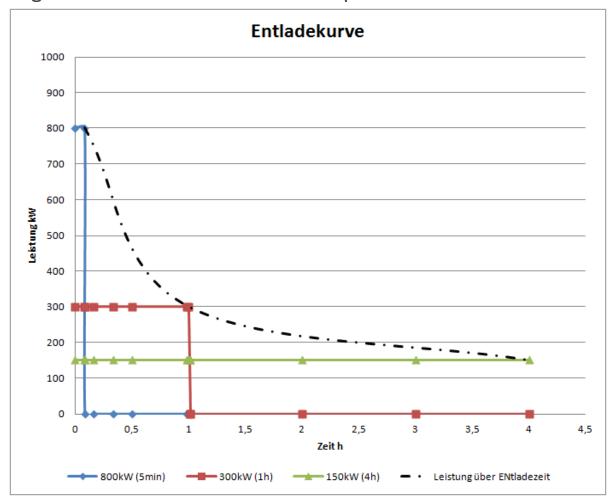

- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich
- Bis zu 3500 Vollzyklen Lebensdauer
- Chemische Reaktion bei Entladung endotherm
- Keine Standorteinschränkung

- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich
- Bis zu 3500 Vollzyklen Lebensdauer
- Chemische Reaktion bei Entladung endotherm
- Keine Standorteinschränkung
- Kostengünstig durch modularer Aufbau



- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich
- Bis zu 3500 Vollzyklen Lebensdauer
- Chemische Reaktion bei Entladung endotherm
- Keine Standorteinschränkung
- Kostengünstig durch modularer Aufbau
- Erhöhte Anforderungen an Batterieraum (Ex-Schutz, Belüftung)

- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich
- Bis zu 3500 Vollzyklen Lebensdauer
- Chemische Reaktion bei Entladung endotherm
- Keine Standorteinschränkung
- Kostengünstig durch modularer Aufbau
- Erhöhte Anforderungen an Batterieraum (Ex-Schutz, Belüftung)
- Einfache Inbetriebnahme



- Hochstromfähig (Bis zu 1,2 A/Ah_{Nominal})
- Ansprechzeiten im ms-Bereich
- Bis zu 3500 Vollzyklen Lebensdauer
- Chemische Reaktion bei Entladung endotherm
- Keine Standorteinschränkung
- Kostengünstig durch modularer Aufbau
- Erhöhte Anforderungen an Batterieraum (Ex-Schutz, Belüftung)
- Einfache Inbetriebnahme
- Geringer Wartungsaufwand (Automatisierung; Fernwartung)

Anwendungsspektrum Batteriespeicher

Abbildung: Entladekennlinie für Batteriespeicher bei 90% SOC

Fazit

Volkswirtschaftliche Notwendigkeit vorhanden, aber:

- Keine finanziellen Anreize für Speicherung von regenerativen Energien
- Regelenergie erfolgt derzeit ausschließlich Leistungsbasiert über langen Zeitraum

Daher:

Fazit

Volkswirtschaftliche Notwendigkeit vorhanden, aber:

- Keine finanziellen Anreize für Speicherung von regenerativen Energien
- Regelenergie erfolgt derzeit ausschließlich Leistungsbasiert über langen Zeitraum

Daher:

- Zusatzvergütung für intelligente PV-Kraftwerke und
- Öffnung Regelenergiemarkt für Batteriespeicher
 - (Primär- sowie Sekundärmarkt) für Batteriespeichersysteme. z.B. durch Angebotsausschreibungen Kapazitiv statt Leistungsbezogen
 - → Batterie EEG